Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(5): 3016-3026, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629562

RESUMO

Sweet sorghum has a large biomass and strong cadmium (Cd) absorption capacity, which has the potential for phytoremediation of Cd-contaminated soil. In order to study the Cd phytoremediation effect of sweet sorghum assisted with citric acid on the typical parent materials in southern China, a field experiment was carried out in two typical parent material farmland areas (neutral purple mud field and jute sand mud field) with Cd pollution in Hunan Province. The results showed that:① Citric acid had no inhibitory effect on the growth of sweet sorghum. After the application of citric acid, the aboveground biomass of sweet sorghum at the maturity stage increased by 10.1%-24.7%. ② Both sweet sorghum planting and citric acid application reduced the soil pH value, and the application of citric acid further reduced the soil pH value at each growth stage of sweet sorghum; this decrease was greater in the neutral purple mud field, which decreased by 0.24-0.72 units. ③ Both sweet sorghum planting and citric acid application reduced the total amount of soil Cd, and the decreases in the neutral purple mud field and jute sand mud field were 23.8%-52.2% and 17.1%-31.8%, respectively. The acid-extractable percentage of soil Cd in both places increased by 38.6%-147.7% and 4.8%-22.7%, respectively. ④ The application of citric acid could significantly increase the Cd content in various tissues of sweet sorghum. The Cd content in the aboveground part of the plant in the neutral purple mud field was higher than that in the jute sand mud field, and the Cd content in stems and leaves was 0.25-1.90 mg·kg-1 and 0.21-0.64 mg·kg-1, respectively. ⑤ After applying citric acid, the Cd extraction amount of sweet sorghum in neutral purple mud soil in the mature stage reached 47.56 g·hm-2. In summary, citric acid could enhance the efficiency of sweet sorghum in the phytoremediation of Cd-contaminated soil, and the effect was better in neutral purple mud fields. This technology has the potential for remediation coupled with agro-production for heavy metal-contaminated farmland.


Assuntos
Poluentes do Solo , Sorghum , Cádmio/análise , Biodegradação Ambiental , Solo , Areia , Ácido Cítrico , Poluentes do Solo/análise , China , Grão Comestível/química
2.
Huan Jing Ke Xue ; 45(3): 1793-1802, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471890

RESUMO

A rice pot experiment was conducted to identify the effect of silica fertilizer prepared from husk ash on the soil bioavailability of cadmium (Cd) and arsenic (As), enzyme activities, microbial community structure, and heavy metal content in brown rice at different growth stages. The results showed that the application of 0.1%-1.0% silica fertilizer-husk ash increased the pH value of soil by 0.04-0.24 units and the content of soil available silicon by 44.2%-97.5%. It also decreased the content of available Cd and available As by 16.2%-21.4% and 16.0%-24.9%, respectively. With the increase in application amount, the soil enzyme activities increased at all growth stages, and the sucrase activity and the dehydrogenase activity significantly increased by 6.3%-145.7% and 6.7%-224.1%, respectively. The analysis of the soil microbial community composition structure at mature stages showed that the application of silica fertilizer-husk ash had no effect on microbial α-diversity, but it had a significant effect on microbial ß-diversity and then promoted microbial growth and maintained the stability of the community structure. With the increase in application amount, the contents of Cd in brown rice decreased by 29.3%-89.7%, and the contents of total As and inorganic As in brown rice decreased by 7.8%-42.3% and 17.2%-44.5%, respectively. Under the application of 0.5% and 1.0% silica fertilizer-husk ash, the Cd contents in brown rice were lower than 0.2 mg·kg-1, and the inorganic As contents in brown rice were lower than 0.35 mg·kg-1. In conclusion, the silica fertilizer-husk ash can improve soil quality and reduce the contents of Cd and As in brown rice, and it is eco-friendly and can be used to remedy the paddy soil contaminated with Cd and As.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Cádmio/análise , Arsênio/análise , Dióxido de Silício , Solo/química , Oryza/química , Fertilizantes/análise , Poluentes do Solo/análise
3.
Sci Total Environ ; 830: 154633, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35314228

RESUMO

The practical application of in situ remediation techniques requires an understanding of the dynamic changes in soil enzyme activity as indicators of soil fertility and health. Experiments were carried out in paddy soils co-contaminated with cadmium (Cd) and arsenic (As) at low (L) and high (H) levels. A calcium and iron (CaFe)-based amendment (limestone + iron powder + silicon fertilizer + calcium­magnesium-phosphate fertilizer) was applied to the soil at concentrations of 0, 450, and 900 g·m-2 (labeled CK, T1, and T2, respectively), and sampling was conducted at the tillering (TS), booting (BS), filling (FS), and mature (MS) stages. In soil L, urease activity increased significantly by 15.8% under T1 treatment at the MS, catalase activity increased significantly under T2 treatment by 52.4% at the FS and 25.9% at the MS, and acid phosphatase activity increased significantly by 50.1%-65.9% at the TS. For soil H, urease activity increased by maximum values of 101.6% and 28.6% at the FS and MS, respectively. Catalase activity increased by 29.0% at the MS under T2 treatment, and acid phosphatase activity increased by maximum values of 40.5%, 16.0%, and 53.9% at the BS, FS, and MS, respectively. The results indicate that the changes in soil enzyme activity were mainly related to the rice growth stage, soil pH, and available Cd and As after the application of Ca-Fe-based amendment. Overall, at the FS and MS, the amendment increased the soil pH, soil enzyme activity, and cation exchange capacity and reduced the available Cd and As, which reduced the Cd and As contents in brown rice.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Fosfatase Ácida , Arsênio/análise , Cádmio/análise , Cálcio , Catalase , Fertilizantes , Ferro , Solo/química , Poluentes do Solo/análise , Urease
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...